Science of Doctor Who

November 8, 2011

When two bloggers join forces, strange things happen. Joined by James Byrne, we travelled to Natimuk, Victoria to host “Science of Fiction: Doctor Who”.

So is time travel possible? Well according to our panel of physicists, it is theoretically possible. Time is not straight, but rather “wibbly-wobbly”. So theoretically you can create a wormhole with a bridge to another wormhole, the problem being however that wormholes are typically extremely unstable. To help stabilise a wormhole you could explode it with anti-gravity. Does this mean that you can trvael to any time you wanted, as the Doctor does? Well no, you could only travel to the time when the wormhole at the other end was created, much to the chagrin of 7% of our audience who wished they could travel to earlier in the day and change their mind about going to the show.

Teleportation, however, was not as ‘easy’ as time travel. Our panel suggested that you could scan a body and transmit the data to another place, then rebuild the body. However, it was pointed out that this would entail destroying the original body which raises an ethical quandry, and besides would the rebuilt you really be you? Also, according to a back-of-the-envelope calculation there is around 3000 trillion DVD’s worth of data in the body, so transmitting that much data restricts the viability of teleportation.

The panel also talked life on other planets (“while there may be life on other planets, with our current levels of technology the chances of finding it are extremely slim, and even then it may not be something we recognise as a living being”), and robotics (when the audience found Billie Piper to be as creepy as a humanoid robot).

The event even had its own robot dog – K-9. And here is where it started getting strange. Despite having never seen an episode of Doctor Who, James started getting into the spirit of the weekend, to the extent that on our travels we decided to make a record of “The Adventures of K-9”.

K-9 arrives in Natimuk

K-9 was hugely popular at the show, with a number of people coming up afterwards asking for photos with him. So much so, when we left he thought he owned the town.

K-9 marking his territory

Just like a real dog......

Visiting Horsham

Exploring Nhill

K-9 meets a friend in Kaniva

In Bordertown

Visiting the mystifying Land Rover on a Pole in Keith

The Land Rover on a Pole is so strange even the Doctor came for a look.

This is not where Tin Tin lives, by the way.

Last stop, Tailem Bend.

Waiting patiently by the door of the Science Exchange, Adelaide.


The 2011 World Solar Challenge has been run and won

October 20, 2011

They started under clear skies and blazing heat and finished in steady rain, but the winner of the 2011 World Solar Challenge has been decided. After 4 days of travelling, Tokai University (Japan) crossed the finishing line north of Adelaide today in the lead.

Tokai University's car crossing the line surrounded by team members

In the closest finish in the history of the WSC, mere minutes separated Tokai and second placed Nuon Solar Team from the Netherlands. Third placegetters University of Michigan (USA) were themselves only a short distance behind. The close finish is remarkable given the distance travelled and time spent on the road. Ashiya University, of Japan, and Team Twente, also of the Netherlands, are further behind vying for fourth place and expected to finish Friday, as is Team Aurora of Australia, not far behind Ashiya and Twente.

The World Solar Challenge is an epic 3000km solar car challenge, running down the length of Australia from Darwin to Adelaide. With unlimited regulations it is likely all the cars would be able to exceed the road speed limit and run for extended periods of time. Instead, the regulations deliberately limit battery sizes and solar collection area to prevent the ability for the cars to run at maximum speed for hours on end and hence to help promote the development of more efficient solar collector units and motors.

The main differentiator between the cars is the ability of the solar cells to collect energy from the sun and convert it into electricity. With limited battery sizes, the energy which can be held on board the car isn’t enough to allow unrestricted running. Instead, the speed of the car is dictated by the combination of the amount of energy being collected from the solar panels, and the efficiency of the motor using that energy. The faster a car runs, the more energy it uses and hence the more energy it needs to collect to replace that used. Quite simply, if a car’s solar panels aren’t efficient in collecting energy to replace that being used, the car will run out of electricity. So a balance needs to be found between energy collection and expenditure, with cars more efficient at collecting and using energy able to run at higher speeds.

Further adding to the challenge, running of the cars is restricted to certain hours of the day, with cars required to hold at positions overnight. To ensure that the cars do maintain these hold positions, and stay within the legal speed limits, a sophisticated tracking system is employed to monitor the progress of each team. This ‘Mission Control’ was this year based in the Science Exchange in Adelaide.

This year’s race was never going to break any records with the challenge suspended for several hours due to bushfires close to the race route. There was also another dramatic development on day 4 when a car from Team Philippines, having been parked for repairs to its battery system, suffered an explosion in its battery packs. Thankfully, no one was injured.

Another challenge faced by the teams competing in the World Solar Challenge are the outsized road trains which Australian highways are famous for. These extremely long and wide trucks normally require traffic coming the other way to pull off the highway to allow the truck to pass. However, according to Bruno Moorthamers from Nuon in an interview with The Register, a solar car’s steering doesn’t allow this manoeuvre. Instead, Bruno said he has to drive “a little under” the overhanging loads of the trucks.

Despite crossing the official finishing line Thursday afternoon, a late developing fault meant that Nuon would not enter Adelaide city until the following day, meaning that celebrations in the Victoria Square ceremonial finishing line were reserved for Tokai. Dutch supporter groups hoping to cheer home Nuon and Twente were left instead to congratulate the victorious team and wait for their teams to arrive on the Friday. Tokai certainly celebrated in the rain, and definitely showed their excitement at having won such a hard-fought challenge.

Tokai team members celebrating at the finish

Celebrating with sake

Zoz Brooks from the Discovery Channel meets the driver who brought the Tokai car across the line.

The winning Tokai University team

The team celebrates by jumping into the Victoria Square fountain.

The Tokai team congratulate each other

Team Twente supporters at the finishing line

Supporters of Nuon Solar Team at the finishing line

Tokai celebrate in the Victoria Square fountain

Getting the sustainability message out through film

August 21, 2011

Over the past few weeks I’ve been involved in the organisation of public screenings for the 2011 SCINEMA Festival of Science Film.  The festival showcases science dramas, docos, animations and shorts, and in 2011 SCINEMA received over 400 entries from 35 countries including entries from professional filmmakers, amateurs, and student-groups, making it one of the foremost science film festivals in the world.

For me three films in particular stood out, and this blog post is based on their message – that we are way too wasteful, and unless things change things are going to get far worse.  Worse not only in terms of resource availability, but also in an economic sense that we’re getting ripped off by some very shrewd business people.

It is no secret that we are a wasteful society.  Humans now produce more waste than ever before, and while much of this can be recycled and reused, much is not.  Take for example metal, and iron in particular.  In 2008 the worldwide crude metal consumption was 1.4 billion tons, twice what it was in the 1970’s and nearly seven times the level of the 1950’s.  That makes sense, populations are increasing and just from an infrastructure point of view more metal needs to be used to support these increases.  However, despite the fact that metals can be recycled indefinitely around 70% of metals are used only once then discarded.  As a result of this rate, after 5 cycles only 0.25% of metal is still in circulation.  The rest forms the billions of tons of scrap metal around the world.

Such is the extent of our disposal of metal, we throw away enough iron and steel to supply all the carmakers in the world on a continuous bases.  Aluminium however – Americans dispose of enough to be able to rebuild their air force every 3 months.  When looking at environmental and energy efficiency, aluminium which is recycled uses 95% less energy than making the metal from scratch, meaning 20 aluminium cans can be made from recycled material for the energy cost of a single can being made from new material.

Taking all that into account, surely it makes sense to recycle metals more than we currently are. It doesn’t make sense to keep mining and refining all this metal given we already have so much available and able to be reused.

But why is our consumption increasing so quickly? Well partially it is a result of planned obsolescence.  Believe it or not, the lifespan of a light bulb in 1920 was longer than it was in 1950.  The humble light bulb was the originator of planned obsolescence, when manufacturers make products wear out quickly so that people have to purchase more.  In fact during the 1920’s and 30’s, there was an international cartel of light bulb manufacturers who banded together and deliberately set a limit on the lifespan of the light bulb for this very purpose.  Should any of the member companies exceed this life span they were fined heavily.  This cartel also controlled distribution and sales, increasing prices and ensuring competitors would not gain market share.

There is another type of planned obsolescence though, not through technical means like artificially shortening lifespans, but through marketing means.  Quite often manufacturers seem to release new model products with little or no improvement over the outgoing model, and through marketing convince the consumer they need to upgrade to this newer product.

This is done purely for economic purposes, to boost sales and company income.  However it has the flipside of increasing the production of waste.

So what can we do about increasing recycling?  It requires both an industry action to reuse more metals in manufacturing processes, and also consumer action to recycle and provide more access to materials which can be recycled.  In Australia only around 50% of recyclable waste is actually recycled.  However, in South Australia that level is closer to 80%, with the reason being that SA has a recycling deposit scheme – consumers are paid to recycle.  Manufacturers have previously fought against such schemes, and recently when SA increased their scheme several multi-national companies resisted the move.  However, it cannot be argued that providing a minor incentive does improve public behaviour.  50% of our recyclable waste is a considerable amount of needless landfill. Surely being smarter about what we throw away is only a benefit?

We as people can do so much to reduce consumption and landfill.  Just improving our own recycling and disposal of goods can make a huge difference, and it takes minimal effort and little or no cost.  But increasing sustainability can also go beyond just what we throw away, and again it is only beneficial.  Growing a small amount of vegetables or herbs will be cheaper than buying them from the supermarket, and will probably be tastier too, while the effort to maintain them will probably be less than having to duck out to the supermarket when you realise you’ve forgotten to buy something.

The public can make a significant effort through making basic changes to our lifestyles.  However these changes won’t take us backwards, in fact they’ll take us forward into a society where we have the same quality of life but produce less waste and spend less money.  Surely that is an improvement.

So which three films from SCINEMA did I find particularly interesting and were the inspiration for this blog post?

The winner of the 2011 SCINEMA Best Film was The Light Bulb Conspiracy, by Cosima Dannoritzer of-Spain.  An investigative piece, LBC details how “planned obsolescence” is incorporated into just about every product we buy.  This includes not only a technical planned obsolescence – where products deliberately have a limited lifespan to make customers purchase more and more products, but also a psychological planned obsolescence, where customers are induced to buy the newest product, despite being in some cases no better than their old product.

Going right back to the 1920’s and using the humble light bulb as an example, LBC follows planned obsolescence throughout its history, and shows how manufacturers are contributing to the wastefulness of society solely to make money, including revealing insights from one of the Philips family members – the family which established the Philips electrical goods manufacturers.  But, as LBC shows, the public is starting to fight back.


Despite not winning any prizes, Waste Not by Ruth Hessey of Australia, is a fantastic film about recycling and sustainability in our everyday lives. With some fantastic cinematography – they even make the processing of rubbish a visual spectacle – this 25 minute short film talks with people involved in every step of the sustainability movement, from scientists and policy advisors, to the garbo’s who collect our household rubbish and those people who actually work at recycling plants, and even the head chef from one of Australia’s top restaurants, Tetsuya’s.  The overriding message from all of those people is that we need to improve the way we recycle and reuse, because what we’re doing at the moment is just so wasteful, and making those improvements does not have to be difficult, or expensive.  As one of the interviewees remarks, “saving the planet is not about going back and living in a cave… this is actually about progress.”  And while documentaries on this topic in the past have been, to be honest, boring, Waste Not is captivating; the story is told by regular people and really does inspire the viewer to make a change.

Not taking anything away from the sheer power in the way it delivers its message, or the winner for Best Cinematography at 2011 SCINEMA (Where the Wild Things Were, Amber Cherry Eames, Scotland), this would in fact have been my pick for that award.


Another film which hits hard and delivers its message particularly powerfully is 99% Rust, by Nenko Genov of Bulgaria.  Using a very simple narrative style, black and white photographs with captions and haunting music courtesy of New Order, it rams home how wasteful society is.  Just why do we have so much scrap metal lying around when it could easily, cheaply and efficiently be recycled and used indefinitely?

99% Rust by Nenko Genov

99% Rust from Nenko Genov on Vimeo.


On a completely unrelated topic, one of the most popular films shown during our screenings was Worm Hunters, produced by Chris Carroll of Australia, and winner of the Special Jury Prize.  Taking a light hearted look at several groups of scientists, the film follows the groups as they travel the world literally hunting worms, hoping to find species that have never been seen before.  While that may sound dull, we received more comments from filmgoers about this film than any other, it comes together into a really great fun film which children in particular enjoyed immensely.

The Square Kilometre Array – Australia’s final pitch

July 16, 2011

Last week saw the final pitches delivered by the two consortiums bidding for the SKA: Australia and New Zealand, and South Africa. These pitches were delivered at the SKA2011 conference in Canada and provided the final opportunity for each consortium to convince the selection panel that their region was the better site for the SKA to be situated. With anzSKA Project Director Dr Brian Boyle describing the SKA as a “Megascience project”, this is the largest, arguably most complex scientific apparatus every planned, and will be a massive boon not only for the hosting country but for science as a whole.


The two most critical aspects of the success of this project is the development of information technology, and energy generation, according to Professor Peter Quinn, Director of The International Centre for Radio Astronomy Research. The SKA will be at least 10,000 times more capable than any telescope before it, and as a result will generate unprecedented amounts of data. In fact, a single day of operation of the SKA will generate more data than the entire world generates in an entire year, which will be stored in a single, central, storage site. This makes the software developed for the SKA arguably the most critical component of the entire project, as it must be able to analyse and compile these monumental amounts of data. In fact the IT requirements of this project are so large that, according to Prof Quinn, the SKA will drive the IT industry for the next 10-15 years.


Green energy is another critical aspect of the SKA project and the Australian bid. The power requirements of the SKA telescopes, of which there will be around 3000, and central computing facilities will be considerable. Additionally, the SKA telescopes will be scattered throughout Australia and New Zealand, raising difficulties for the distribution of energy to the telescope sites. This makes it unviable to rely on regular electricity supplies, and if dedicated power generation facilities are developed, they must be sustainable to limit the effect of the SKA on the environment. This means that the development of innovative energy solutions is a critical step to bringing the SKA to fruition, as will technology to improve energy management, control and efficiency.


Senator Kim Carr, Australian Federal Minister for Innovation, Industry, Science and Research, was present in Canada for the final pitch. “This is a project of immense international significance” he told media, highlighting the government’s support of the SKA bid. In particular, he was excited by the benefits this project could have for technological advancements developed during the project which could flow through to everyday life. “In terms of high speed computing, advanced engineering, ICT, in terms of development of green power, there are a range of new technologies I believe will flow from this, as we have seen in the past new technologies flow from astronomical research.”


Senator Carr continued, “The Australian public will receive huge benefits from a project of this type.” He points that there will be “enormous employment opportunities…. and this is a project which will go for 50 years”, and also pointed to technological flow on effects from previous astronomy projects such as wireless networking, now used in nearly every computer in the world.


Australia and New Zealand’s bid has several strengths which should place it in a favourable position. The radio quietness – that is the extremely low level of background radiowaves – found in the Australian outback is a vital feature to maximise the sensitivity and accuracy of the SKA. In fact, a 500km ‘radio quiet zone’ has been established around the SKA sites to ensure that this radio quietness is protected and maintained. Australia’s land mass also provides flexibility in the siting of array stations, allowing the absolutely perfect location to be used for the telescopes. Dr Boyle also suggests the National Broadband Network is a particular strength in the ANZ bid, providing infrastructure for the transmission of data from the SKA outstations to the central data facility. Finally, Australia and New Zealand’s strength lies in its people, with a large group of very strong and reputable astronomy researchers already existing and able to take full advantage of the project.


According to Brian Boyle, the week provided “positive progress” for the Australian bid, and that both bid parties were satisfied that the decision making process in selecting the site was very robust and would lead to an outcome in the best interest of the project as a whole. Following these final bids, an independent expert committee is considering the two sites, and a final decision will be made in February 2012. Whichever site is selected, the SKA project will provide considerable opportunities to all countries involved, and will provide scientific discoveries which literally change the way we see our place in the universe. The building, management and operation of the SKA will also provide technological advancements which will potentially change day-to-day life, making this a scientific project which will have outcomes far beyond astronomical.


For more information about the SKA and the scale of this megascience project, see the previous articles:

SKA: Something Kinda Awesome

SKA: The technical aspect of a mega project

No article this fortnight

July 2, 2011

Due to a mixture of a busy travel schedule and a couple of new big projects on the cards, there will not be an article this fortnight.

Stay tuned, thatscienceguy will return mid-July.

New ways to communicate science – Science-Rap

June 17, 2011

This fortnight I thought I’d do something a little different. Rather than a normal article, I thought I’d draw your attention to a group of science communicators who definitely have their own style. These people are part of a burgeoning group of science rappers.

Oort Kuiper
Jon Chase, aka Oort Kuiper, is a science communicator from the UK. Often working with another communicator Mark Brake, Jon takes his unique way of communicating science into the public by performing at schools, libraries and other community centres. Jon has been commissioned by organisations such as NASA to create science raps, and has performed at notable institutions such as the London Science Museum, the Royal Society, and the Royal Institution (GB).

With a background in aerospace, science and science fiction, his raps tend to focus more on human’s place in the Universe and how life relates to it. He gained some exposure for his 2008 rap Astrobiology, commissioned by NASA.

His other notable works include Life – An Autobiography, a six and a half minute journey through life on Earth.

A Better View reveals the world we live in through science and technology.

However Jon’s discography also includes topics as diverse as rain and genetics.

One of the most well-known science rappers is Kate McAlpine, otherwise known as Alpinekat. The Michigan State University graduate was working as a science writer at the Large Hadron Collider in Switzerland when she first recorded Large Hadron Rap, featuring her and a number of CERN colleagues rapping and dancing as only scientists can. After being posted on YouTube, Large Hadron Rap has gone on to be viewed over 6.6 million times.

Despite initial scepticism from CERN management, Kate received permission to perform and record the video in and around the LHC. After viewing the finished product however, they were won over. “We love the rap, and the science is spot-on”, CERN spokesman James Gillies told National Geographic.

AlpineKat has gone on to make more science rap videos, including Rare Isotope Rap, and Black Hole Rap, below.

Tom McFadden
Tom, an instructor from Stanford University in California, approaches his science rapping a little differently. Not afraid to use technical details, his raps contain many more scientific terms and jargon, so they do require some prior knowledge. This makes them more useful for university students and scientists than the general public.

Nevertheless it is impressive he manages to rap around the jargon, and for those with a cell biology background, they’re quite entertaining.

For example, Put Some ACh Into It explains the two sides of the autonomic nervous system – the signalling system that the body uses to unconsciously control the body. The autonomic nervous system controls things such as heart rate, digestion, breathing rate and perspiration, as explained in the video.

Get Taq explains several commonly used biotechnology tools, such as replicating DNA, connecting pieces of DNA together, producing custom proteins, and even genetically modifying mice to investigate what role particular proteins play in an animal.

These three artists aren’t the only exponents of science rap, but they’re amongst the ones to keep an eye on. And as science communicators forever look for new ways to engage with the community, they’re the ones at the forefront of a new way to connect with the public.

Check out Jon, Kate and Tom’s raps, plus others at